Course Description
Introduction to modeling longitudinal data; Population-averaged vs. subject-specific modeling; Classical repeated measures analysis of variance methods and drawbacks; Review of estimating equations; Population-averaged linear models; Linear mixed effects models; Maximum likelihood, restricted maximum likelihood, and large sample theory; Review of nonlinear and generalized linear regression models; Population-averaged models and generalized estimating equations; Nonlinear and generalized linear mixed effects models; Implications of missing data; Advanced topics (including Bayesian framework, complex nonlinear models, multi-level hierarchical models, relaxing assumptions on random effects in mixed effects models, among others). Implementation in SAS and R.